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Abstract. First order phase transitions in general proceed via nucleation of bubbles. A theoretical basis
for the calculation of the nucleation rate is given by the homogeneous nucleation theory of Langer and its
field theoretical version of Callan and Coleman. We have calculated the nucleation rate beyond the thin
wall approximation by expanding the bubble solution and the fluctuation determinant in powers of the
asymmetry parameter. The result is expressed in terms of physical model parameters.

1 Introduction

First order phase transitions are a common phenomenon
in statistical mechanics and in field theory [1]. They are
characterized by the discontinuous change of an order pa-
rameter or other physical quantities as some driving pa-
rameter, e.g. temperature, is varied. In general they are
associated with a latent heat. In the theory of elementary
particles different phase transitions, which play a role in
the evolution of the early universe, are predicted to be of
first order. Among them is the electroweak phase tran-
sition, which has been investigated intensively in recent
years, and the grand unification phase transition, which
might be related to the inflationary epoch of the universe
[2].

There are different mechanisms by which a first or-
der phase transition can take place. In many cases it pro-
ceeds via nucleation of bubbles. Consider evaporation for
example. If the temperature crosses the transition point
the system enters a metastable state. In this state bub-
bles of the new, stable phase form spontaneously, which
may then expand and lead to the completion of the tran-
sition to the new phase. Such metastable states have first
been mentioned by Fahrenheit [3]. A theory of the forma-
tion of bubbles in liquid systems has been developed by
Becker and Döring [4]. In the framework of the Ginzburg-
Landau theory of phase transitions a phenomenological
treatment was given by Cahn and Hilliard [5]. The theory
of bubble nucleation was put on a profound theoretical
basis by Langer [6–8]. His approach allows for a system-
atical treatment of the nucleation rate. A review is given
in [9]. In the context of quantum field theory the nucle-
ation theory was developed by Voloshin et al. [10], Callan
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and Coleman [11,12] and Affleck [13]. Callan and Cole-
man presented an approach to the decay of an unstable
vacuum in the framework of Euclidean quantum field the-
ory. Although developed independently, it is very similar
to Langer’s formulation in terms of functional integrals. A
nice exposition is given in Coleman’s book [14].

The starting point of nucleation theory is the classical
Ginzburg-Landau potential for the order parameter. It has
an absolute minimum, corresponding to the stable phase,
and one (or more) other minima. When the first order
phase transition is approached, a previously higher mini-
mum gets lower and lower, and when the transition point
is crossed, it becomes the new absolute minimum. There is
a barrier between the minima such that the system does
not immediately go over into the new minimum but re-
mains in a metastable state. This state is stable against
small fluctuations. Due to fluctuations small regions (bub-
bles) of the stable phase may form spontaneously. Their
creation leads to a gain in energy proportional to the vol-
ume,

−HV =
4π
3
R3η , (1)

where R is the radius of the bubble and η is the difference
of the potentials between the two minima. On the other
hand a surface energy

HS = 4πR2σ , (2)

where σ is the surface tension, has to be supplied, and the
total energy associated with the bubble is approximately
given by

Hb(R) = HS + HV = 4πR2(σ − R

3
η) . (3)

For small R this function increases with R so that small
bubbles tend to shrink back to zero. Only if the radius
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exceeds the critical size of

Rc =
2σ
η
, (4)

where
dHb(Rc)
dR

= 0 , (5)

the bubble will expand and lead to the transformation
of the metastable phase into the stable one in the whole
volume.

The process described above is called homogeneous nu-
cleation in contrast to heterogeneous nucleation, where
impurities, like dust or ice crystals, trigger the phase tran-
sition. The cosmological phase transitions mentioned ear-
lier are homogeneous. The formation of bubbles in homo-
geneous nucleation theory is analogous to quantum me-
chanical tunneling through a potential barrier. In fact, the
description of tunneling by means of Euclidean functional
integrals leads to a completely equivalent formalism. This
fact is the basis of the relation between Langer’s work and
that of Callan and Coleman.

The rate in which the phase transition proceeds is es-
sentially determined by the average time until a critical
bubble forms spontaneously. A critical bubble of radius
Rc is a solution of the field equations coming from the
Ginzburg-Landau Hamiltonian. It has an energy Hc =
Hb(Rc). The nucleation rate Γ per time and volume is
proportional to the Boltzmann factor of a critical bubble
and can be written as

Γ = Ae−Hc , (6)

which has already been found by Arrhenius [15].
For practical applications it is important to know the

prefactor A. Langer’s theory gives an expression for A in
terms of the determinant of the operator of fluctuations
around the critical bubble. It is the main object of this ar-
ticle to calculate the nucleation rate including the prefac-
tor in the framework of scalar field theory, i.e., Ginzburg-
Landau theory with fluctuations. Some elements of the
calculation have been supplied by Langer [6], but a com-
plete analytical calculation has been missing in the litera-
ture so far. A numerical method for the evaluation of the
nucleation rate has been presented by Baacke and Kiselev
[16].

In general it is not possible to find an analytical solu-
tion of the field equations for finite potential differences η.
An approximation, where the field equations can be solved
exactly, is the “thin wall approximation” [17]. This is the
limiting case where η is much smaller than the height of
the potential barrier. In this case the thickness of the wall
of a critical bubble is much smaller than its radius, and its
density profile can be approximated by a step function.

In this article we calculate the nucleation rate analyt-
ically beyond the thin wall approximation. We do this by
expanding all quantities in powers of η and calculating the
logarithm of the functional determinant of the fluctuation
operator in terms of powers of η. The leading term corre-
sponds to the thin wall approximation. For the calculation
of the determinant we employ the Seeley expansion of the
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Fig. 1. The potential U with false (φ+) and true vacuum (φ−)

associated heat kernel on the one hand, and the spectrum
of the fluctuation operator on the other hand. Ultraviolet
divergencies require renormalization as usual. The result-
ing expression for the nucleation rate Γ is expressed in
terms of renormalized parameters of the effective poten-
tial.

2 Nucleation theory

As shown by Langer [6,8], the nucleation rate Γ , that
is the decay probability per time and per volume of a
metastable state represented by a local minimum of a po-
tential, is proportional to the imaginary part of a certain
energy:

Γ = −2 ImE . (7)

The energy E is given by the logarithm of a functional
integral

N
∫

[dφ] e−H(φ) , (8)

with appropriate boundary conditions, where φ(x) is the
local order parameter and H is the Ginzburg-Landau
Hamiltonian (a factor kBT has been absorbed into H).
The Hamiltonian is given by

H(φ) =
∫
d3x

[
1
2

(∂µφ(x))2 + U(φ(x))
]
, (9)

with an asymmetric potential U . We consider a potential
of the type depicted in Fig. 1, with a metastable minimum
at φ = φ+ and a stable minimum at φ = φ−. Following
Coleman we call the phase corresponding to the minimum
at φ+ the false vacuum and the one corresponding to the
minimum at φ− the true vacuum.

In a semiclassical approach the desired imaginary part
of the functional integral can be obtained by means of
a saddle point expansion around the classical solution
which corresponds to the transition from the false to the
true vacuum [6,11,12]. This solution describes a critical
bubble. A bubble centered at the origin is represented
by a radial symmetric function φc(r), which depends on
r = √

xµxµ only. The boundary condition at infinity

lim
r→∞φc(r) = φ+ (10)
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Fig. 2. Profile of the critical bubble

reflects that there is false vacuum outside the bubble. The
presence of the true vacuum inside the bubble means that
the value of the field at the center is near φ−:

φc(0) ≈ φ− . (11)

Due to differentiability of φ(x) we must have

dφc

dr

∣∣∣∣
r=0

= 0 . (12)

The field equation for the bubble solution is

d2φ

dr2
+

2
r

dφ

dr
= U ′(φ) . (13)

If we interpret r as time and φ as the coordinate of a
particle, then this equation equals the equation of motion
for a point particle in the reversed potential −U with a
time-dependent friction term. From the form of the po-
tential it is intuitively clear that there is a unique value
of φc(0) near φ−, where the particle starts with zero ve-
locity, then rolls down the slope and climbs up the other
hill to approach its top φ+ asymptotically as time goes
to infinity. In fact, Coleman, Glaser and Martin [18] have
proved that such a radial-symmetric non-trivial solution
exists and that it is the one with smallest energy apart
from the trivial solution φ ≡ φ+. The qualitative form of
the solution is as in Fig. 2, which shows a cross-section
through the critical bubble.

For fields φ(x) near the classical solution φc the Hamil-
tonian can be expanded up to quadratic terms as

H[φ] = Hc +
1
2

∫
d3x(φ(x) − φc(x))M(φ(x) − φc(x))

+ . . . , (14)

with the energy of the critical bubble,

Hc = H[φc] , (15)

and the fluctuation operator

M = −∂2 + U ′′(φc(x)) . (16)

Due to translation invariance the operator M has three
zero modes proportional to ∂µφc(x). Furthermore, there is
one negative mode, which is related to the metastability

of the false vacuum. Namely, as has been indicated in the
introduction, expansion or contraction of the critical bub-
ble lowers its energy, which means that the corresponding
mode belongs to a negative eigenvalue of M. A proof of
the existence of a single negative mode under rather gen-
eral assumptions has been given by Coleman [19].

From the work of Langer and of Callan and Coleman
it follows that the functional integral under consideration
acquires an imaginary part, which is proportional to

∣∣λ−det′M∣∣−1/2 e−Hc (17)

in the Gaussian approximation, where det′ is the determi-
nant without negative and zero modes, and λ− is the neg-
ative eigenvalue of M. If multibubble solutions are taken
into account in a dilute gas approximation, the final result
for the nucleation rate is obtained as

Γ =
(Hc

2π

)3/2 1√|λ−|

∣∣∣∣ det′ M
det M(0)

∣∣∣∣
−1/2

e−Hc . (18)

Here the operator M(0) is the Helmholtz operator defined
by

M(0) = −∂2 + U ′′(φ+) . (19)

The expression (18) is of the form announced in the intro-
duction. In this work the above expression, in particular
the functional determinant, will be evaluated by field the-
oretic methods.

3 The bubble solution

We consider the standard Ginzburg-Landau potential con-
sisting of a symmetric double-well term,

Us =
g

4!
(φ2 − v2)2 , (20)

and an additional asymmetric term:

U = Us +
η

2v
(φ− v) + U0 . (21)

The constant

U0 =
3η2

8v4g
+

9η3

16v8g2 +O(η4) (22)

is chosen such that U(φ+) = 0 (cf. Fig. 1). The parameter
η fixes the asymmetry of the potential. In particular, the
difference between the values of the potential at its minima
φ± is

U(φ+) − U(φ−) = 2η +O(η3) . (23)

We define a bare mass parameter m in terms of the sym-
metric part Us:

m2 =
∂2

∂φ2Us(φ)
∣∣∣∣
φ=v

=
gv2

3
. (24)
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The field equation for radially symmetric fields is

−d2φ

dr2
− 2
r

dφ

dr
+
g

6
φ(φ2 − v2) +

η

2v
= 0 . (25)

Before we turn to a systematic approach to solving this
equation let us consider the thin wall approximation. In-
spection of the field equation in the light of the mechani-
cal analogue mentioned in the introduction shows that for
small η the solution is nearly equal to −v inside a sphere
of radius R and nearly equal to +v outside. The region
where φ differs significantly from these values is a thin
shell of thickness θ. The thin wall approximation amounts
to

φ =




−v , for r < R− θ/2
φk , for R− θ/2 < r < R+ θ/2
+v , for r > R− θ/2 ,

(26)

where the “kink”

φk(r) = v tanh
(m

2
(r −R)

)
(27)

is a solution of

−d2φ

dr2
+
g

6
φ(φ2 − v2) = 0 (28)

and θ = 4/m.
The energy of a bubble solution can be written as

Hc = 4π
∫ ∞

0
dr r2

[
1
2

(
dφ

dr

)2

+ Us(φ) + U0

]

+
2πη
v

∫ ∞

0
dr r2(φ− v) . (29)

The second term is substantially different from zero only
inside the bubble. It yields the volume contribution

HV = −4π
3
R3η . (30)

The first term gets a substantial contribution only inside
the wall,

HS = 4π
∫ R+θ/2

R−θ/2
dr r2

[
1
2

(
dφ

dr

)2

+ Us(φ) + U0

]

≈ 4πR2
∫
dr

(
dφ

dr

)2

= 4πR2σ , (31)

with

σ = 2
m3

g
. (32)

For small asymmetries η the critical radius Rc = 2σ/η,
for which the energy is stationary, gets large. Therefore
the wall is indeed thin compared to the size of the bubble.
The total energy in this approximation is

Hc =
16πσ3

3η2 . (33)

For finite η the solution of (25) cannot be written in
closed form. In our approach the solution is constructed
by means of an expansion in powers of η. It is convenient
to introduce dimensionless variables

r̃ =
m

2
r, R̃ =

m

2
R, ξ = r̃ − R̃, η̃ =

g

2m4 η, (34)

ϕ(ξ) =
1
v
φ(r) , (35)

where the value of R̃ will be fixed later. The field equation
in these variables is

−d2ϕ

dξ2
− 2
ξ + R̃

dϕ

dξ
+ 2ϕ(ϕ2 − 1) +

4
3
η̃ = 0 . (36)

Based on the thin wall approximation we write a Laurent
series as an ansatz for the critical radius,

R̃ =
a−1

η̃
+ a0 + a1η̃ + a2η̃

2 + . . . , (37)

and expand the field equation into powers of η̃:

−d2ϕ

dξ2
− 2
a−1

η̃
dϕ

dξ
+ η̃2 2(ξ + a0)

a2
−1

dϕ

dξ

+2ϕ(ϕ2 − 1) +
4
3
η̃ +O(η̃3) = 0 . (38)

Its solution is obtained perturbatively up to second order
by means of the expansion

ϕ = ϕ0 + η̃ ϕ1 + η̃2ϕ2 +O(η̃3) . (39)

To zeroeth order we get the well-known kink,

ϕ0(ξ) = tanh(ξ) . (40)

The field equation to first order fixes the leading coefficient
in R̃, (37), as

a−1 = 1 . (41)

The first order solution obeying the correct boundary con-
dition at ξ → ∞ reads

ϕ1 = −1
3

− b sech2ξ (42)

with a free parameter b. The constant term reflects the
shift of the minimum

ϕ± = ±1 − η̃

3
∓ η̃2

6
− 4η̃3

27
+O(η̃4) . (43)

The term proportional to b can be traded against a shift in
the critical radius R̃ in the lowest order solution according
to

tanh(ξ − bη̃) = tanh ξ − b η̃ sech2ξ − b2 η̃2 sech3ξ sinh ξ
+O(η̃3) . (44)

We can therefore set b = 0 and remain with

ϕ1 = −1
3
. (45)
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The equation to second order implies

a0 = 0 (46)

and has the solution

ϕ2(ξ) = −ξ

2
(tanh ξ − 1) +

ξ

6
(cosh ξ − sinh ξ)2

−1
2
ξ2 sech2ξ − 7

12
ξ sech2ξ − ln(1 + e−2ξ)

×
(

1
2
ξ sech2ξ +

1
2

tanh ξ
)

− 1
3

ln(1 + e−2ξ)

× sinh ξ cosh ξ − 1
12

tanh ξ +
1
2

sech2ξT (ξ) , (47)

where we define

T (ξ) =
∫ ξ

0
ξ′ tanh ξ′dξ′ . (48)

Whereas the first order solution only corresponds to shifts
of the minimum and of the critical radius, the second order
solution describes true deformations of the bubble. The
boundary condition at r = 0, i.e. ξ = −R̃, is fulfilled order
by order in η̃. For example, the leading order solution
yields

ϕ′
0(−R̃) = e−2/η̃(4 +O(η̃)) , (49)

which vanishes to all orders in η̃. Similar observations hold
in higher orders.

With the expression for ϕ we can calculate the energy
of a bubble, which in dimensionless quantities is given by

Hc =
12πm
g

∫ ∞

0
dr̃ r̃2

{
(ϕ′(ξ))2 +

[
(ϕ2(ξ) − 1)2

−(ϕ2
+ − 1)2

]
+

[
8
3
η̃

(
ϕ(ξ) − ϕ+

)]}
. (50)

The integrands are centered around the critical radius r̃ =
R̃. The integration range in ξ can be extended to the whole
real axis. The error coming from this is proportional to
factors of the type e−const./η̃ and vanishes to all orders in
η̃.

From the parity of the functions ϕk(ξ) it follows that
the expression for the energy is of the form

Hc =
12πm
g

(O0R̃
2 + P0) + η̃(L1R̃+ v1R̃

3)

+η̃2(O2R̃
2 + P2) + η̃3(L3R̃+ v3R̃

3) +O(η̃4) . (51)

An expression for the critical radius R̃ is obtained from
the condition

dHc

dR̃

!= 0 . (52)

Explicit calculation of the coefficients leads to two more
terms in the Laurent series for R̃:

R̃ =
1
η̃

+ 0 +
2 − 3π2

36
η̃ + 0 · η̃2 +O(η̃3) , (53)

so that the bubble is now completely determined to second
order. For the energy we get

Hc =
12πm
g

[
8
9

1
η̃2 +

2(4 − 9π2)
81

+O(η̃2)
]
. (54)

4 The heat kernel of M
Our main task is to calculate the determinant ratio

det′ M
det M(0) , (55)

which is part of the prefactor in the nucleation rate. In
dimensionless variables the corresponding operators are

M =
4
m2 M = − ∂2

∂ξµ∂ξµ
+ 6ϕ2(ξ) − 2 (56)

and

M (0) =
4
m2 M(0) = − ∂2

∂ξµ∂ξµ
+ 6ϕ2

+ − 2 . (57)

Substituting the bubble solution yields for the potential

V (ξ) = 6ϕ2(ξ) − 2
= V0(ξ) + η̃V1(ξ) + η̃2V2(ξ) +O(η̃3) , (58)

with the coefficients

V0(ξ) = −6 sech2ξ + 4 , (59)
V1(ξ) = −4 tanh ξ , (60)

V2(ξ) =
2
3

+ ξ
[
4 tanh ξ + 4 sinh ξ cosh ξ − (7 + 6 ln 2)

×sech3ξ sinh ξ
] − tanh ξ ln(cosh ξ)(6ξ sech2ξ

+4 cosh ξ sinh ξ + 6 tanh ξ) − (1 + 6 ln 2)

× tanh2 ξ − 4 ln 2 sinh2 ξ

+6 sech3ξ sinh ξT (ξ) . (61)

For the free operator we find accordingly

V (0) = 6ϕ2
+ − 2 = V

(0)
0 + η̃V

(0)
1 + η̃2V

(0)
2 +O(η̃3) , (62)

with

V
(0)
0 = +4 , (63)

V
(0)
1 = −4 , (64)

V
(0)
2 = −4

3
. (65)

The scaling dimensions of M and M(0) are equal, as we
have checked with the help of their zeta functions (see be-
low). Therefore in the determinant ratio the four removed
eigenvalues lead to a supplementary factor:

det′ M
det M(0) =

(
4
m2

)4 det′M
detM (0) . (66)

To get the same number of eigenvalues in the numerator
and denominator, we also remove the four lowest eigenval-
ues ω(0)

0 = V (0) of the free operator M (0), which are equal
to each other:

det′M
detM (0) = (ω(0)

0 )−4 det′M
det′M (0)

. (67)
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The prime indicates the omission of the four lowest eigen-
values. The remainder is written in Schwinger’s proper
time representation:

ln
det′M

det′M (0)
= −

∫ ∞

0

dt

t
Tr′(e−tM − e−tM(0)

) . (68)

In the integrand we recognize the heat kernels exp(−tM)
of the operators M and M (0), respectively. The distribu-
tion of the large eigenvalues determines the behaviour of
the heat kernel for small t, whereas the lowest eigenvalues
determine the large-t behaviour. The strategy for the cal-
culation of the integral over t is to divide the integration
range into a small-t part, where the heat kernel is approx-
imated by an asymptotic expansion, and a large-t part,
where the spectrum is employed [20].

Let us consider the small-t region first. For small and
positive t an asymptotic expansion for the heat kernels,
the socalled Seeley expansion, exists [21]. For the trace of
the heat kernels in D dimensions it is of the form

Tr(e−tM − e−tM(0)
) = (4πt)−D/2

∞∑
n=1

tnOn . (69)

There are various methods for the calculation of the co-
efficients On. Our calculation is based on the insertion of
a plane wave basis in the manner of [20,22]. By means of
partial integrations we managed to express the coefficients
in terms of the potential V and the Laplacean ∂2, which
for a radial symmetric potential like ours depends only on
r̃ [23]. Inserting the potential V (ξ), (58), and substituting
the expression for R̃, (53), we obtained with the help of
Mathematica [24] the result

Tr(e−tM − e−tM(0)
)

=
1

(4πt)3/2

[
1
η̃2

(
112π

3
t− 160π

3
t2 +

832π
15

t3

−11392π
315

t4 +
3328π
315

t5 − 49664π
24255

t6 + . . .

)
+

(−39.4801 t+ 372.46 t2 − 541.384 t3 + 658.823 t4

−913.886 t5 + 1225.92 t6 − . . .
)

+O(η̃2)
]
. (70)

From the leading term t−1/2 it can be seen that the
integral over t diverges at small t. It is well known that
this divergence is another disguise of the usual ultraviolet
divergencies of quantum field theory. They can be treated
by means of dimensional regularization. It is a peculiar-
ity of the three-dimensional case that the regularized ex-
pression is identical to the zeta-function regularized one
without any additional finite contribution [25]. The zeta
function of an operator A is in general defined by

ζA(z) = TrA−z =
1

Γ (z)

∫ ∞

0
dttz−1 Tr(e−At) (71)

for sufficiently large Re z, where the integral converges,
and continued analytically to the rest of the complex

plane. The zeta-function regularized determinant is then
given by

ln detA = − d

dz
ζA(z)

∣∣∣∣
z=0

. (72)

As we are interested in the ratio of two determinants, and
want to exclude zero and negative modes, we define

ζ ′(z) =
1

Γ (z)

∫ ∞

0
dttz−1 Tr′(e−tM − e−tM(0)

) for

Re z > 1 . (73)

It can be continued analytically to z = 0 by separating the
first term in the Seeley expansion of Tr(e−tM − e−tM(0)

),
Eqs. (69),(70):

ζ ′(z) =
1

Γ (z)

∫ ∞

0
dttz−1

{
Tr′(e−tM − e−tM(0)

) −Θ(1 − t)

× 1
(4πt)3/2 tO1

}
+

1
(4π)3/2

1
Γ (z)

O1

z − 1/2
. (74)

Now the ratio of determinants can be expressed as

ln
det′M

det′M (0)
= − d

dz
ζ ′(z)

∣∣∣∣
z=0

. (75)

At this point let us check the relative dimensions of
the two operators. If the dimensions of M and M (0) differ
by some number u this means that

det′ λM
det′ λM (0)

= λu det′M
det′M (0)

. (76)

Representing the ratio of determinants by the derivative
of the zeta-function one obtains

u = ζ ′(0) . (77)

In the expression (74) for the analytically continued zeta
function the integral is convergent. Since 1/Γ (z) vanishes
at z = 0, we find

ζ ′(0) = 0 , (78)

so that the operators have equal dimensions as announced
above.

5 Calculation of the determinant

As mentioned above, the strategy is to split the t-integra-
tion into a small-t part and a large-t part. Therefore we
introduce a parameter Λ separating the two regions, and
split the zeta function as

ζ ′(z) = ζ ′
<(z) + ζ ′

>(z) (79)

with

ζ ′
<(z) =

1
Γ (z)

∫ Λ

0
dttz−1 Tr′(e−tM − e−tM(0)

) (80)
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and ζ ′
>(z) correspondingly. In the same way the log of the

ratio of determinants is split as

I ≡ ln
det′M

det′M (0)
= I< + I> (81)

with

I< = − d

dz
ζ ′
<(z)

∣∣∣∣
z=0

, (82)

I> = − d

dz
ζ ′
>(z)

∣∣∣∣
z=0

. (83)

Because the t-integration is not singular for t > Λ, we can
express I> directly as

I> = −
∫ ∞

Λ

dt

t
Tr′(e−tM − e−tM(0)

) . (84)

5.1 High-frequency part

The behaviour of the heat kernel at small t is governed
by the high frequencies in the spectrum of the operators.
Therefore the contribution to the determinant from the
integration over small t is its high-frequency part. The
small-t expansion of the heat kernel is given in (70). For
the calculation of ζ ′

<(z) we have to subtract the contri-
butions of the negative mode ω− < 0 and the three zero-
modes ofM , and to add the contribution of the four lowest
eigenvalues of M (0):

ζ ′
<(z) =

1
Γ (z)

∫ Λ

0
dttz−1

{
1

(4πt)3/2

∞∑
n=1

Ont
n − et|ω−|

− 3 + 4 e−tω
(0)
0

}
. (85)

For Re z > 1 the integral can be performed:

ζ ′
<(z) =

1
Γ (z)

1
(4π)3/2

∞∑
n=1

On

z − 3/2 + n
Λz−3/2+n

−|ω−|−z

Γ (z)

∫ |ω−|Λ

0
ds sz−1(es − 1) − 4

Λz

Γ (z + 1)

+4
(ω(0)

0 )−z

Γ (z)
γ(z, ω(0)

0 Λ) , (86)

where
γ(a, x) =

∫ x

0
e−t ta−1dt (87)

is an incomplete gamma function [26, sec. 6.5]. This ex-
pression can be continued analytically to z = 0, and the
derivative at this point yields

I< = − 1
(4π)3/2

∞∑
n=1

{ On

n− 3/2
Λn−3/2

}

+Ei(|ω−|Λ) − ln(|ω−|Λ) + 3γ + 4E1(ω
(0)
0 Λ)

+4 ln(ω(0)
0 Λ) , (88)

where γ = −Γ ′(1) = 0.57721 . . . is Euler’s constant and

Ei(x) = −P
∫ ∞

−x

e−t

t
dt , x > 0 (89)

E1(x) =
∫ ∞

x

e−t

t
dt , x > 0 (90)

are the exponential integrals [26, sec. 5.1]. Here the explicit
coefficients On from (70) and the expressions for ω− and
ω

(0)
0 given in the next section are to be inserted.

5.2 Low-frequency part

The low eigenvalues of M and M (0) determine the be-
haviour of the heat kernels for large t. We calculate the
complete spectrum with the help of a perturbative expan-
sion in η̃.

In spherical coordinates the eigenvalue equation

Mv(r̃) = ωv(r̃), (91)

goes by means of the usual transformation

v(r̃) =
1
r̃
ψ̂(r̃) (92)

and the shift

ξ = r̃ − R̃, ψ(ξ) = ψ̂(r̃) (93)

over into[
− d2

dξ2
+

l(l + 1)
(ξ + R̃)2

+ V (ξ)
]
ψnl(ξ) = ωnlψnl(ξ) . (94)

where V (ξ) is given in (58), and l = 0, 1, 2, . . . is the an-
gular quantum number. With the help of (53) the left
hand side is expanded in powers of η̃. To lowest order
one finds the Pöschl–Teller potential V0 = −6 sech2ξ + 4,
whose eigenvalues are known exactly [27]. There exist two
discrete values

ω0
0 = 0 , ψ0

0(ξ) =

√
3
4

sech2ξ , (95)

ω0
3 = 3 , ψ0

3(ξ) =

√
3
2

sinh ξsech2ξ , (96)

and a continuum

ω0
k = k2 + 4, k ∈ R , (97)

with the corresponding eigenfunctions

ψ0
k(ξ) ∼ eikξ(3 tanh2 ξ − 1 − k2 − 3ik tanh ξ) . (98)

Because of the radial symmetry, the problem is here only
defined along the half-axis r̃ > 0. The boundary condition
at r̃ = 0, i.e. ξ = −R̃, is obeyed up to terms which vanish
to all orders in η̃.
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To first order in η̃ the corrections to the eigenvalues
vanish.

For the second order, we use the following trick [28].
For every eigenfunction ψ0

n in the zeroeth order there is
an operator Ωn, fulfilling the relation

[Ωn, (−∂2 + V0)]ψ0
n = V1ψ

0
n . (99)

The second correction in the eigenvalue is then given by

ω2
n = 〈ψ0

n|V1Ωn + V2|ψ0
n〉 + l(l + 1) . (100)

This way, we find the second order for the discrete eigen-
values:

ω2
0 = l(l + 1) − 2 , (101)
ω2

3 = l(l + 1) + 3 − π2 , (102)

using

Ω0 = ξ , Ω3 = 2ξ − cosh ξ
sinh ξ

. (103)

So the discrete eigenvalues of M are

ω0l = η̃2(l(l + 1) − 2
)

+O(η̃4) (104)

ω3l = 3 + η̃2(l(l + 1) + 3 − π2) +O(η̃4) . (105)

They are (2l + 1)-fold degenerate.
In particular, the negative mode is given by

ω− = ω00 = −2η̃2 +O(η̃4) , (106)

and the three zero modes are ω01.
The band of eigenvalues ω0l near zero gives a contri-

bution to I> which reads

I0
>(Λ) = −

∫ ∞

Λ

dt

t

∞∑
l=2

(2l + 1)e−ω0lt . (107)

This expression can be evaluated with the help of various
nontrivial relations involving special functions. The result
is

I0
>(Λ) = − 1

η̃2Λ
− 5

3
ln(η̃2Λ) + c0 +O(η̃2Λ) (108)

with

c0 =
9
2

− ln 54 − 4ζ ′
R(−1) − 5

3
γ = 0.21068 . . . , (109)

where ζR(z) is Riemann’s zeta function. However, the cor-
rections to the eigenvalues from next order perturbation
theory would produce corrections of order (η̃2Λ)0, and
therefore we write

I0
>(Λ) = − 1

η̃2Λ
− 5

3
ln(η̃2Λ) +O((η̃2Λ)0) . (110)

In a similar way the band of eigenvalues ω3l near three
gives a contribution

I3
>(Λ) = − 3

η̃2Γ (−1, 3Λ) +O(η̃0) . (111)

with the incomplete gamma function [26, sec. 6.5])

Γ (a, x) =
∫ ∞

x

e−t ta−1dt . (112)

The term of order η̃0 has been calculated, but is not dis-
played, because I0

> already contains an uncertainty of this
order.

Now we turn to the remaining spectrum. The contin-
uous eigenvalues of M and all eigenvalues of M (0) can be
written in the form

ωkl = k2 + V (0) + η̃2l(l + 1) +O(η̃4) , k ≥ 0 , (113)

with
V (0) = 4 − 4η̃ − 4

3
η̃2 +O(η̃3) . (114)

In order to calculate their contribution to the heat ker-
nel one needs the difference of the spectral densities %l(k)
and %

(0)
l (k). We have calculated the spectral densities in

the framework of perturbation theory. This was done by
extracting the phase shifts δl(k) from the asymptotic be-
haviour of the wavefunctions and using the relation

%l(k) − %
(0)
l (k) =

1
π

∂δl
∂k

. (115)

It turns out that in n-th order of perturbation theory there
are terms proportional to (η̃R̃)n, which contribute to the
lowest order in η̃, because R̃ ∼ 1/η̃. Summing up all these
terms we have been able to obtain the spectral densities to
lowest order only. Omitting the details, the contribution
of the continuous spectra to the trace of the heat kernels
(leaving out the four lowest eigenvalues of M (0)) is given
by

∞∑
l=0

(2l + 1)
∫ ∞

0
dk

(
%l(k) − %

(0)
l (k)

)
e−ωklt + 4e−tω(0)

= − 1
η̃2 t

[
e−3t + 1 −

(
e−3tΦ(

√
t) + Φ(

√
4t)

)

−2
3
V

(0)
1

√
t

4π
e−4t

]
+O(η̃0) , (116)

where
Φ(x) =

2√
π

∫ x

0
e−t2dt (117)

is the error integral. From this we get the contribution to
I> by integration over t:

Ik
>(Λ) =

1
η̃2

[
3Γ (−1, 3Λ) − 4

3
√
π
Γ (−1/2, 4Λ) +

1
Λ

√
π

×Γ (1/2, Λ) −
∫ ∞

Λ

dt

t2
Φ(

√
t)e−3t

]
+O(η̃0).(118)

We now have all contributions to I> = I0
> + I3

> + Ik
>

available. In Fig. 4 they are presented as a function of Λ
for η̃ = 0.1. One can see that for Λ > 1 the contribution
I0
> from the band near zero dominates the sum.
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Fig. 3. The heat kernel K′ as a function of t for η̃ = 0.1.
The dotted curve represents the Seeley expansion and the full
curve is the approximation from summing over the eigenvalues

5.3 Composition of the determinant

With all pieces at hand the logarithm of the determinant

I = ln
det′M

det′M (0)
= I<(Λ) + I>(Λ) (119)

can now be composed. The uncertainty in our result for
I< is of order η̃2. On the other hand, for I> there are
already unknown contributions of order η̃0. In the numer-
ical evaluations we nevertheless include the constant terms
from our calculation of I0

> and I3
>. Since the result for I

is strongly dominated by I<, as will be seen below, the
influence of the unknown corrections is expected to be
numerically small.

In an exact calculation I would be independent of the
artificial cutoff parameter Λ. Using the approximative ex-
pressions above, a dependence on Λ of course shows up,
and we have to make a good choice. As a first guide we
consider the heat kernel calculated from the Seeley expan-
sion, (69), and from the eigenvalues, respectively. In Fig. 3
the kernel

K ′(t) = Tr′(e−tM − e−tM(0)
) (120)

is shown as function of t for η̃ = 0.1 from the two approx-
imations.

The small-t approximation and the large-t approxima-
tion are in good agreement for t < 1.3. A value of Λ near
1.2, where the two curves intersect each other, appears to
be reasonable for this value of η̃.

To make things more quantitative, the various contri-
butions to I and the total sum are shown as a function of
Λ in Fig. 4. A broad plateau, where the Λ-dependence is
rather small can clearly be recognized.

An optimal value for Λ can be determined in the fol-
lowing way. As discussed above, the expression for I can
be expanded in powers of η̃. The coefficients are functions
of Λ. Requiring

dI

dΛ
= 0 (121)

order by order in η̃ leads to

Λ = 1.11672 + 17.3175 η̃2 +O(η̃3) . (122)

I

Λ0.5 1 1.5 2

-1000

-500
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1000

1500

2000

Fig. 4. The different contributions to I as a function of Λ for
η̃ = 0.1: I< (· · · · · ·), I0

>(– – –), I3
>(— —), Ik

>(– · – ·). The full
curve is the sum of the four contributions

With this value one obtains

I(η̃) =
10.158
η̃2 − 5

3
ln η̃2 − 13.63 +O(η̃0) (123)

with an error estimate of

∆I(η̃) =
0.0527
η̃2 − 6.37 +O(η̃0) . (124)

The systematic uncertainties of order η̃0 come from the
corresponding unknown terms in I>. Their contribution
should be numerically small, as can be seen from Fig. 4.
The error ∆I is estimated from the error of the Seeley
expansion, which in turn is taken to be given by its highest
term.

5.4 Improved calculation of the determinant

The result for the determinant can be improved in var-
ious ways. First of all, one observes that the high fre-
quency (small t) part dominates the result. Also, the low
frequency part contains uncertainties of constant order in
η̃. Therefore it is desirable to use as much information as
possible from the high frequency part, i.e., from the Seeley
expansion.

The determinant could be estimated from the Seeley
expansion alone by introducing a smooth exponential cut-
off [29]. With a free cutoff parameter µ one writes

K ′(t) = Tr′(e−tM − e−tM(0)
)

= e−µtTr′(e−tM − e−tM(0)
) eµt , (125)

and expands the modified kernel as

Tr′(e−tM − e−tM(0)
) eµt

=
1

(4πt)3/2

∑
n

hn(µ)tn +
∑

n

gn(µ)tn , (126)

where the coefficients hn come from the Seeley expansion
(70) and the coefficients gn from the subtracted negative
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mode and zero modes. Due to the factor exp(−µt) the t-
integration can be extended to infinity. In this way one
gets an estimate for I from the small-t expansion alone.

We have used this method and obtained results which
are in fair agreement with the earlier ones. It is, however,
possible to introduce a further improvement. From the
knowledge of the band of low-lying eigenvalues ω0l it is
possible to calculate its contribution to I completely [30].
The outcome is

I0 = −5
3

ln η̃2 +
9
2

− ln 54 − 4ζ ′
R(−1) +O(η̃2) (127)

= −5
3

ln η̃2 + 1.172 700 5 +O(η̃2) . (128)

This result can be employed in the calculation of I by sep-
arating the contribution of this band of eigenvalues. This
means that from the Seeley expansion above the small-t
expansion of

∞∑
l=2

(2l + 1)e−ω0lt =
1
η̃2t

− 5
3

+O(η̃2t) (129)

is subtracted and the rest is treated according to the ex-
ponential cutoff method. To the result the expression for
I0 is added finally.

The value of the cutoff-parameter µ has been obtained
with the same procedure as in the case of Λ by requiring
dI/dµ to vanish. For the log of the determinant we get in
this way

I(η̃) =
10.037
η̃2 − 5

3
ln η̃2 − 7.98 − 4 η̃ +O(η̃2) . (130)

We have estimated the error by means of the Shanks ex-
trapolation and error determination [31] and obtained

∆I(η̃) =
0.00154
η̃2 − 0.084 − 0.795 η̃ +O(η̃2) . (131)

A last improvement is based on the knowledge of the
exact leading terms in the small-η̃ expansion of I(η̃) [30].
From the results for the discrete and continuous spectra
of M (0) it is possible to derive the exact result

I =
c

η̃2 − 5
3

ln η̃2 +O(η̃0) , (132)

with

c =
20
3

+ 3 ln 3 = 9.9625 . (133)

So we write our final result for the determinants as

ln
det′M

detM (0) = I − 4 lnω(0)
0

=
c

η̃2 − 5
3

ln η̃2 − 13.52 +O(η̃2) . (134)

6 The nucleation rate

Having obtained the determinant of the fluctuation op-
erator the nucleation rate can be calculated according to
(18), where the energy of the critical bubble, (54), and the
negative mode, (106), have to be inserted. In terms of the
mass m and the dimensionless parameters η̃ and

u =
g

m
(135)

the nucleation rate is

Γ =
m3

u3/2 η̃7/3 exp
[
−

(
32π
3

1
u

+
c

2
+O(u)

)
1
η̃2

+
(

8π
27

(9π2 − 4)
1
u

+ 6.845 +O(u)
)

+O(η̃2)
]
. (136)

The parameters appearing in the Hamiltonian are, how-
ever, not immediately accessible in phenomenological ap-
plications or in a field theoretical context. More appropri-
ate are the renormalised parameters, which are directly
related to measurable quantities. Even more important in
this context is the fact that in the dimensional regulari-
sation scheme around d = 3 dimensions the divergencies
in the relation between bare and renormalised parameters
are not visible in the one-loop approximation. Therefore
physical quantities should be expressed in terms of renor-
malised parameters.

We shall use the renormalised quantities as, e.g., speci-
fied in [25]. The renormalised massmR and the field renor-
malisation constant Z are defined in terms of the inverse
propagator at small momenta:

G−1(p) =
1
Z

(
m2

R + p2 +O(p4)
)
. (137)

The renormalised mass is equal to the inverse of the second
moment correlation length

ξ(2) =
1
mR

. (138)

The renormalised field is given by

φR = Z−1/2φ (139)

and the renormalised field expectation value

vR = Z−1/2(v + 〈φ〉) (140)

correspondingly. The renormalised coupling, defined in
terms of the mass and the field expectation value by

gR =
3m2

R

v2
R

, (141)

has dimensions of a mass. Its dimensionless counterpart is

uR =
gR

mR
. (142)
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The renormalised dimensionless asymmetry parameter is

η̃R =
gR

2m4
R

η . (143)

Up to first order, the relations between the bare and the
renormalised quantities are given by [32]:

m = mR

{
1 − 3

128π
uR +O(u2

R)
}
,

u = uR

{
1 +

31
128π

uR +O(u2
R)

}
. (144)

Expressed in terms of the renormalised parameters the
nucleation rate is

Γ =
m3

R

u
3/2
R η̃

7/3
R

exp
[
−

(
32π
3

1
uR

+
c

2
− 37

4
+O(uR)

)
1
η̃2

R

+
(

8π
27

(9π2 − 4)
1
uR

+ 0.758 +O(uR)
)

+O(η̃2
R)

]
.

(145)
This formula is an analytical expression for Γ which for

the first time includes a complete treatment of quadratic
fluctuations. Compared to the thin wall approximation,

ΓTWA = exp
[
−32π

3
1

uR η̃2
R

]
, (146)

the leading term for small asymmetries η,

Γ =
m3

R

u
3/2
R η̃

7/3
R

exp
[
−

(
32π
3

1
uR

+
c

2
− 37

4

)
1
η̃2

R

]
, (147)

completes the thin wall approximation by giving the pref-
actor in addition to the energy of the critical bubble.

The next-to-leading terms go beyond the thin wall ap-
proximation. They can be employed to obtain an estimate
for the region of validity of the small η̃R expansion. Com-
paring the terms proportional to u−1

R in the exponential
and requiring the correction to be smaller than the leading
term we get

η̃R < 0.65 . (148)

The result for Γ can be used to obtain estimates for
the nucleation rate by inserting phenomenological or mea-
sured values for the physical parameters. Moreover it can
be employed in the context of field theory for an estimate
of the decay of a false vacuum at high temperatures.

Baacke and Kiselev [16] have calculated the nucleation
rate in three-dimensional scalar field theory by evaluating
the fluctuation determinant numerically. Our results can,
however, not be compared directly, because the authors of
[16] pick out the terms relevant in a certain high temper-
ature limit. Also the renormalization scheme is different
from ours.

Another numerical calculation of the nucleation rate
in the framework of renormalisation group improved ef-

fective average actions has been presented in [33]. In this
case, too, it is not possible without further information
to compare their results with ours, because the results of
[33] are expressed in terms of parameters, whose relation
to the renormalised parameters used here is not clear.
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